| 1721 | AMC 12 2007 B Q21 | The first \( 2007\) positive integers are each wri... | 1500.00 | 
            
            
                | 1722 | AMC 12 2011 A Q6 | Two tangents to a circle are drawn from a point \(... | 1500.00 | 
            
            
                | 1723 | AMC 12 2011 A Q11 | A frog located at \((x,y)\), with both \(x\) and \... | 1500.00 | 
            
            
                | 1724 | AMC 12 2011 A Q14 | A segment through the focus \(F\) of a parabola wi... | 1500.00 | 
            
            
                | 1725 | AMC 12 2011 A Q17 | Let \(f\left(x\right)=10^{10x}, g\left(x\right)=\l... | 1500.00 | 
            
            
                | 1726 | AMC 12 2011 A Q20 | Triangle \(ABC\) has \(AB=13\), \(BC=14\), and \(A... | 1500.00 | 
            
            
                | 1727 | AMC 12 2011 A Q24 | Let \(P(z) = z^8 + (4\sqrt{3} + 6) z^4 - (4\sqrt{3... | 1500.00 | 
            
            
                | 1728 | AMC 12 2011 A Q25 | For every \(m\) and \(k\) integers with \(k\) odd,... | 1500.00 | 
            
            
                | 1729 | AMC 12 2011 B Q2 | There are 5 coins placed flat on a table according... | 1500.00 | 
            
            
                | 1730 | AMC 12 2011 B Q9 | At a twins and triplets convention, there were \(9... | 1500.00 | 
            
            
                | 1731 | AMC 12 2011 B Q13 | Triangle \(ABC\) has side-lengths \(AB=12\), \(BC=... | 1500.00 | 
            
            
                | 1732 | AMC 12 2011 B Q14 | Suppose \(a\) and \(b\) are single-digit positive ... | 1500.00 | 
            
            
                | 1733 | AMC 12 2011 B Q15 | The circular base of a hemisphere of radius \(2\) ... | 1500.00 | 
            
            
                | 1734 | AMC 12 2011 B Q19 | At a competition with \(N\) players, the number of... | 1500.00 | 
            
            
                | 1735 | AMC 12 2011 B Q21 | Let \(f_1(x)=\sqrt{1-x}\), and for integers \(n \g... | 1500.00 | 
            
            
                | 1736 | AMC 12 2011 B Q23 | Let \(f(z)=\frac{z+a}{z+b}\) and \(g(z)=f(f(z))\),... | 1500.00 | 
            
            
                | 1737 | AMC 12 2011 B Q24 | Consider all quadrilaterals \(ABCD\) such that \(A... | 1500.00 | 
            
            
                | 1738 | AMC 12 2003 A Q9 | A set \( S\) of points in the \( xy\)-plane is sym... | 1500.00 | 
            
            
                | 1739 | AMC 12 2003 A Q14 | Points \( K\), \( L\), \( M\), and \( N\) lie in t... | 1500.00 | 
            
            
                | 1740 | AMC 12 2003 A Q16 | A point \( P\) is chosen at random in the interior... | 1500.00 |