Problem Rankings

Rank Source Description Elo Rating
141 AMC 10 2005 A Q19 Three one-inch squares are palced with their bases... 1531.26
142 AMC 10 2007 B Q25 How many pairs of positive integers \( (a,b)\) are... 1531.26
143 AMC 10 2009 B Q24 The keystone arch is an ancient architectural feat... 1531.26
144 AMC 10 2010 A Q22 Eight points are chosen on a circle, and chords ar... 1531.26
145 AMC 10 2010 B Q17 Every high school in the city of Euclid sent a tea... 1531.26
146 AMC 12 2021 Spring B Q18 Let \(z\) be a complex number satisfying \(12\lver... 1531.26
147 AMC 12 2008 A Q24 Triangle \( ABC\) has \( \angle C = 60^{\circ}\) a... 1531.26
148 AMC 12 2014 A Q24 Let \(f_0(x)=x+|x-100|-|x+100|\), and for \(n\geq ... 1531.26
149 AMC 12 2007 A Q23 Square \( ABCD\) has area \( 36,\) and \( \overlin... 1531.26
150 AMC 12 2011 B Q20 Let \(f(x)=ax^2+bx+c\), where \(a\), \(b\), and \(... 1531.26
151 AMC 12 2003 B Q10 Several figures can be made by attaching two equila... 1531.26
152 AMC 12 1982 A Q12 Let \(f(x) = ax^7+bx^3+cx-5\), where \(a,b\) and \... 1531.26
153 AIME 1997 I Q11 Let \(x=\frac{\displaystyle\sum_{n=1}^{44} \cos n^... 1531.26
154 AIME 2011 II Q14 There are \(N\) permutations \((a_1,a_2,\dots,a_{3... 1531.26
155 AIME 2020 I Q8 A bug walks all day and sleeps all night. On the f... 1531.26
156 AIME 1996 I Q12 For each permutation \( a_1, a_2, a_3, \ldots,a_{1... 1531.26
157 AMC 8 1989 Q Let \( f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right... 1531.24
158 AMC 8 1994 A Q21 A gumball machine contains \(9\) red, \(7\) white,... 1531.23
159 AMC 12 2023 A Q19 What is the product of all the solutions to the eq... 1530.60
160 AMC 12 2023 B Q6 When the roots of the polynomial \[P(x)=\prod_{i=1... 1530.59