141 |
AMC 10 2005 A Q19 |
Three one-inch squares are palced with their bases... |
1531.26 |
142 |
AMC 10 2007 B Q25 |
How many pairs of positive integers \( (a,b)\) are... |
1531.26 |
143 |
AMC 10 2009 B Q24 |
The keystone arch is an ancient architectural feat... |
1531.26 |
144 |
AMC 10 2010 A Q22 |
Eight points are chosen on a circle, and chords ar... |
1531.26 |
145 |
AMC 10 2010 B Q17 |
Every high school in the city of Euclid sent a tea... |
1531.26 |
146 |
AMC 12 2021 Spring B Q18 |
Let \(z\) be a complex number satisfying \(12\lver... |
1531.26 |
147 |
AMC 12 2008 A Q24 |
Triangle \( ABC\) has \( \angle C = 60^{\circ}\) a... |
1531.26 |
148 |
AMC 12 2014 A Q24 |
Let \(f_0(x)=x+|x-100|-|x+100|\), and for \(n\geq ... |
1531.26 |
149 |
AMC 12 2007 A Q23 |
Square \( ABCD\) has area \( 36,\) and \( \overlin... |
1531.26 |
150 |
AMC 12 2011 B Q20 |
Let \(f(x)=ax^2+bx+c\), where \(a\), \(b\), and \(... |
1531.26 |
151 |
AMC 12 2003 B Q10 |
Several figures can be made by attaching two equila... |
1531.26 |
152 |
AMC 12 1982 A Q12 |
Let \(f(x) = ax^7+bx^3+cx-5\), where \(a,b\) and \... |
1531.26 |
153 |
AIME 1997 I Q11 |
Let \(x=\frac{\displaystyle\sum_{n=1}^{44} \cos n^... |
1531.26 |
154 |
AIME 2011 II Q14 |
There are \(N\) permutations \((a_1,a_2,\dots,a_{3... |
1531.26 |
155 |
AIME 2020 I Q8 |
A bug walks all day and sleeps all night. On the f... |
1531.26 |
156 |
AIME 1996 I Q12 |
For each permutation \( a_1, a_2, a_3, \ldots,a_{1... |
1531.26 |
157 |
AMC 8 1989 Q |
Let \( f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right... |
1531.24 |
158 |
AMC 8 1994 A Q21 |
A gumball machine contains \(9\) red, \(7\) white,... |
1531.23 |
159 |
AMC 12 2023 A Q19 |
What is the product of all the solutions to the eq... |
1530.60 |
160 |
AMC 12 2023 B Q6 |
When the roots of the polynomial \[P(x)=\prod_{i=1... |
1530.59 |