| 141 | AMC 10 2005 A Q19 | Three one-inch squares are palced with their bases... | 1531.26 | 
            
            
                | 142 | AMC 10 2007 B Q25 | How many pairs of positive integers \( (a,b)\) are... | 1531.26 | 
            
            
                | 143 | AMC 10 2009 B Q24 | The keystone arch is an ancient architectural feat... | 1531.26 | 
            
            
                | 144 | AMC 10 2010 A Q22 | Eight points are chosen on a circle, and chords ar... | 1531.26 | 
            
            
                | 145 | AMC 10 2010 B Q17 | Every high school in the city of Euclid sent a tea... | 1531.26 | 
            
            
                | 146 | AMC 12 2021 Spring B Q18 | Let \(z\) be a complex number satisfying \(12\lver... | 1531.26 | 
            
            
                | 147 | AMC 12 2008 A Q24 | Triangle \( ABC\) has \( \angle C = 60^{\circ}\) a... | 1531.26 | 
            
            
                | 148 | AMC 12 2014 A Q24 | Let \(f_0(x)=x+|x-100|-|x+100|\), and for \(n\geq ... | 1531.26 | 
            
            
                | 149 | AMC 12 2007 A Q23 | Square \( ABCD\) has area \( 36,\) and \( \overlin... | 1531.26 | 
            
            
                | 150 | AMC 12 2011 B Q20 | Let \(f(x)=ax^2+bx+c\), where \(a\), \(b\), and \(... | 1531.26 | 
            
            
                | 151 | AMC 12 2003 B Q10 | Several figures can be made by attaching two equila... | 1531.26 | 
            
            
                | 152 | AMC 12 1982 A Q12 | Let \(f(x) = ax^7+bx^3+cx-5\), where \(a,b\) and \... | 1531.26 | 
            
            
                | 153 | AIME 1997 I Q11 | Let \(x=\frac{\displaystyle\sum_{n=1}^{44} \cos n^... | 1531.26 | 
            
            
                | 154 | AIME 2011 II Q14 | There are \(N\) permutations \((a_1,a_2,\dots,a_{3... | 1531.26 | 
            
            
                | 155 | AIME 2020 I Q8 | A bug walks all day and sleeps all night. On the f... | 1531.26 | 
            
            
                | 156 | AIME 1996 I Q12 | For each permutation \( a_1, a_2, a_3, \ldots,a_{1... | 1531.26 | 
            
            
                | 157 | AMC 8 1989 Q | Let \( f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right... | 1531.24 | 
            
            
                | 158 | AMC 8 1994 A Q21 | A gumball machine contains \(9\) red, \(7\) white,... | 1531.23 | 
            
            
                | 159 | AMC 12 2023 A Q19 | What is the product of all the solutions to the eq... | 1530.60 | 
            
            
                | 160 | AMC 12 2023 B Q6 | When the roots of the polynomial \[P(x)=\prod_{i=1... | 1530.59 |