| 541 |
AMC 12 1982 A Q27 |
Suppose \(z=a+bi\) is a solution of the polynomial... |
1516.00 |
| 542 |
AIME 1997 I Q2 |
The nine horizontal and nine vertical lines on an ... |
1516.00 |
| 543 |
AIME 1997 I Q7 |
A car travels due east at \(\frac 23\) mile per mi... |
1516.00 |
| 544 |
AIME 1997 I Q9 |
Given a nonnegative real number \(x,\) let \(\lang... |
1516.00 |
| 545 |
AIME 2018 I Q15 |
David found four sticks of different lengths that ... |
1516.00 |
| 546 |
AIME 2018 II Q13 |
Misha rolls a standard, fair six-sided die until s... |
1516.00 |
| 547 |
AIME 2004 II Q10 |
Let \(S\) be the set of integers between \(1\) and... |
1516.00 |
| 548 |
AIME 2002 I Q12 |
Let \(F(z)=\frac{z+i}{z-i}\) for all complex numbe... |
1516.00 |
| 549 |
AIME 2002 II Q6 |
Find the integer that is closest to \( 1000 \sum_{... |
1516.00 |
| 550 |
AIME 2007 I Q12 |
In isosceles triangle \(ABC\), \(A\) is located at... |
1516.00 |
| 551 |
AIME 2007 II Q7 |
Given a real number \(x,\) let \(\lfloor x \rfloor... |
1516.00 |
| 552 |
AIME 2007 II Q8 |
A rectangular piece of of paper measures 4 units b... |
1516.00 |
| 553 |
AIME 2007 II Q10 |
Let \(S\) be a set with six elements. Let \(P\) be... |
1516.00 |
| 554 |
AIME 2007 II Q15 |
Four circles \(\omega,\) \(\omega_{A},\) \(\omega_... |
1516.00 |
| 555 |
AIME 2017 II Q3 |
A triangle has vertices \(A(0,0)\), \(B(12,0)\), a... |
1516.00 |
| 556 |
AIME 2017 II Q13 |
For each integer \(n\ge 3\), let \(f(n)\) be the n... |
1516.00 |
| 557 |
AIME 2011 I Q6 |
Suppose that a parabola has vertex \(\left(\tfrac{... |
1516.00 |
| 558 |
AIME 2011 II Q8 |
Let \(z_1,z_2,z_3,\dots,z_{12}\) be the 12 zeroes ... |
1516.00 |
| 559 |
AIME 1989 I Q10 |
Let \(a\), \(b\), \(c\) be the three sides of a tr... |
1516.00 |
| 560 |
AIME 2020 I Q5 |
Six cards numbered 1 through 6 are to be lined up ... |
1516.00 |