2901 |
AIME 1984 I Q15 |
Determine \(w^2+x^2+y^2+z^2\) if
\[ \begin{array}... |
1500.00 |
2902 |
AIME 1994 I Q1 |
The increasing sequence \(3, 15, 24, 48, \ldots\) ... |
1500.00 |
2903 |
AIME 1994 I Q2 |
A circle with diameter \(\overline{PQ}\) of length... |
1500.00 |
2904 |
AIME 1994 I Q3 |
The function \(f\) has the property that, for each... |
1500.00 |
2905 |
AIME 1994 I Q6 |
The graphs of the equations \[ y=k, \qquad y=\sqrt... |
1500.00 |
2906 |
AIME 1994 I Q7 |
For certain ordered pairs \((a,b)\) of real number... |
1500.00 |
2907 |
AIME 1994 I Q8 |
The points \((0,0),\) \((a,11)\), and \((b,37)\) a... |
1500.00 |
2908 |
AIME 1994 I Q9 |
A solitaire game is played as follows. Six distin... |
1500.00 |
2909 |
AIME 1994 I Q12 |
A fenced, rectangular field measures 24 meters by ... |
1500.00 |
2910 |
AIME 1994 I Q13 |
The equation \[ x^{10}+(13x-1)^{10}=0 \] has 10 co... |
1500.00 |
2911 |
AIME 1994 I Q14 |
A beam of light strikes \(\overline{BC}\) at point... |
1500.00 |
2912 |
AIME 1994 I Q15 |
Given a point \(P\) on a triangular piece of paper... |
1500.00 |
2913 |
AIME 2015 I Q1 |
The expressions \(A=1\times2+3\times4+5\times6+\cd... |
1500.00 |
2914 |
AIME 2015 I Q3 |
There is a prime number \(p\) such that \(16p+1\) ... |
1500.00 |
2915 |
AIME 2015 I Q4 |
Point \(B\) lies on line segment \(\overline{AC}\)... |
1500.00 |
2916 |
AIME 2015 I Q5 |
In a drawer Sandy has 5 pairs of socks, each pair ... |
1500.00 |
2917 |
AIME 2015 I Q6 |
Point \(A,B,C,D,\) and \(E\) are equally spaced on... |
1500.00 |
2918 |
AIME 2015 I Q7 |
In the diagram below, \(ABCD\) is a square. Point ... |
1500.00 |
2919 |
AIME 2015 I Q8 |
For positive integer \(n\), let \(s(n)\) denote th... |
1500.00 |
2920 |
AIME 2015 I Q9 |
Let \(S\) be the set of all ordered triples of int... |
1500.00 |