| 2841 | AIME 1983 I Q4 | A machine-shop cutting tool has the shape of a not... | 1500.00 | 
            
            
                | 2842 | AIME 1983 I Q5 | Suppose that the sum of the squares of two complex... | 1500.00 | 
            
            
                | 2843 | AIME 1983 I Q7 | Twenty five of King Arthur's knights are seated at... | 1500.00 | 
            
            
                | 2844 | AIME 1983 I Q8 | What is the largest 2-digit prime factor of the in... | 1500.00 | 
            
            
                | 2845 | AIME 1983 I Q9 | Find the minimum value of
\[\frac{9x^2 \sin^2 x +... | 1500.00 | 
            
            
                | 2846 | AIME 1983 I Q10 | The numbers 1447, 1005, and 1231 have something in... | 1500.00 | 
            
            
                | 2847 | AIME 1983 I Q11 | The solid shown has a square base of side length \... | 1500.00 | 
            
            
                | 2848 | AIME 1983 I Q12 | Diameter \(AB\) of a circle has length a 2-digit i... | 1500.00 | 
            
            
                | 2849 | AIME 1983 I Q15 | The adjoining figure shows two intersecting chords... | 1500.00 | 
            
            
                | 2850 | AIME 2009 I Q1 | Call a \( 3\)-digit number geometric if it has \( ... | 1500.00 | 
            
            
                | 2851 | AIME 2009 I Q3 | A coin that comes up heads with probability \( p >... | 1500.00 | 
            
            
                | 2852 | AIME 2009 I Q4 | In parallelogram \( ABCD\), point \( M\) is on \( ... | 1500.00 | 
            
            
                | 2853 | AIME 2009 I Q5 | Triangle \( ABC\) has \( AC = 450\) and \( BC = 30... | 1500.00 | 
            
            
                | 2854 | AIME 2009 I Q6 | How many positive integers \( N\) less than \( 100... | 1500.00 | 
            
            
                | 2855 | AIME 2009 I Q7 | The sequence \( (a_n)\) satisfies \( a_1 = 1\) and... | 1500.00 | 
            
            
                | 2856 | AIME 2009 I Q8 | Let \( S = \{2^0,2^1,2^2,\ldots,2^{10}\}\). Consid... | 1500.00 | 
            
            
                | 2857 | AIME 2009 I Q9 | A game show offers a contestant three prizes A, B ... | 1500.00 | 
            
            
                | 2858 | AIME 2009 I Q10 | The Annual Interplanetary Mathematics Examination ... | 1500.00 | 
            
            
                | 2859 | AIME 2009 I Q11 | Consider the set of all triangles \( OPQ\) where \... | 1500.00 | 
            
            
                | 2860 | AIME 2009 I Q12 | In right \( \triangle ABC\) with hypotenuse \( \ov... | 1500.00 |