| 2681 | AIME 2019 II Q2 | Lily pads \(1,2,3,\ldots\) lie in a row on a pond.... | 1500.00 | 
            
            
                | 2682 | AIME 2019 II Q4 | A standard six-sided fair die is rolled four times... | 1500.00 | 
            
            
                | 2683 | AIME 2019 II Q5 | Four ambassadors and one advisor for each of them ... | 1500.00 | 
            
            
                | 2684 | AIME 2019 II Q6 | In a Martian civilization, all logarithms whose ba... | 1500.00 | 
            
            
                | 2685 | AIME 2019 II Q7 | Triangle \(ABC\) has side lengths \(AB=120\), \(BC... | 1500.00 | 
            
            
                | 2686 | AIME 2019 II Q9 | Call a positive integer \(n\) \(k\)-pretty if \(n\... | 1500.00 | 
            
            
                | 2687 | AIME 2019 II Q10 | There is a unique angle \(\theta\) between \(0^{\c... | 1500.00 | 
            
            
                | 2688 | AIME 2019 II Q11 | Triangle \(ABC\) has side lengths \(AB=7, BC=8, \)... | 1500.00 | 
            
            
                | 2689 | AIME 2019 II Q12 | For \(n \ge 1\) call a finite sequence \((a_1, a_2... | 1500.00 | 
            
            
                | 2690 | AIME 2019 II Q13 | Regular octagon \(A_1A_2A_3A_4A_5A_6A_7A_8\) is in... | 1500.00 | 
            
            
                | 2691 | AIME 2019 II Q14 | Find the sum of all positive integers \(n\) such t... | 1500.00 | 
            
            
                | 2692 | AIME 2019 II Q15 | In acute triangle \(ABC\) points \(P\) and \(Q\) a... | 1500.00 | 
            
            
                | 2693 | AIME 2003 I Q1 | Given that
\[ \frac{((3!)!)!}{3!} = k \cdot n!, \... | 1500.00 | 
            
            
                | 2694 | AIME 2003 I Q2 | One hundred concentric circles with radii \(1, 2, ... | 1500.00 | 
            
            
                | 2695 | AIME 2003 I Q3 | Let the set \(\mathcal{S} = \{8, 5, 1, 13, 34, 3, ... | 1500.00 | 
            
            
                | 2696 | AIME 2003 I Q4 | Given that \(\log_{10} \sin x + \log_{10} \cos x =... | 1500.00 | 
            
            
                | 2697 | AIME 2003 I Q5 | Consider the set of points that are inside or with... | 1500.00 | 
            
            
                | 2698 | AIME 2003 I Q7 | Point \(B\) is on \(\overline{AC}\) with \(AB = 9\... | 1500.00 | 
            
            
                | 2699 | AIME 2003 I Q8 | In an increasing sequence of four positive integer... | 1500.00 | 
            
            
                | 2700 | AIME 2003 I Q9 | An integer between 1000 and 9999, inclusive, is ca... | 1500.00 |