| 2661 | 
                AIME 2001 II Q10 | 
                How many positive integer multiples of 1001 can be... | 
                1500.00 | 
            
            
            
                | 2662 | 
                AIME 2001 II Q11 | 
                Club Truncator is in a soccer league with six othe... | 
                1500.00 | 
            
            
            
                | 2663 | 
                AIME 2001 II Q12 | 
                Given a triangle, its midpoint triangle is obtaine... | 
                1500.00 | 
            
            
            
                | 2664 | 
                AIME 2001 II Q13 | 
                In quadrilateral \(ABCD\), \(\angle{BAD}\cong\angl... | 
                1500.00 | 
            
            
            
                | 2665 | 
                AIME 2001 II Q14 | 
                There are \(2n\) complex numbers that satisfy both... | 
                1500.00 | 
            
            
            
                | 2666 | 
                AIME 2001 II Q15 | 
                Let \(EFGH\), \(EFDC\), and \(EHBC\) be three adja... | 
                1500.00 | 
            
            
            
                | 2667 | 
                AIME 2019 I Q1 | 
                Consider the integer $$N = 9 + 99 + 999 + 9999 + \... | 
                1500.00 | 
            
            
            
                | 2668 | 
                AIME 2019 I Q2 | 
                Jenn randomly chooses a number \(J\) from \(1, 2, ... | 
                1500.00 | 
            
            
            
                | 2669 | 
                AIME 2019 I Q3 | 
                In \(\triangle PQR\), \(PR=15\), \(QR=20\), and \(... | 
                1500.00 | 
            
            
            
                | 2670 | 
                AIME 2019 I Q4 | 
                A soccer team has 22 available players. A fixed se... | 
                1500.00 | 
            
            
            
                | 2671 | 
                AIME 2019 I Q6 | 
                In convex quadrilateral \(KLMN\) side \(\overline{... | 
                1500.00 | 
            
            
            
                | 2672 | 
                AIME 2019 I Q7 | 
                There are positive integers \(x\) and \(y\) that s... | 
                1500.00 | 
            
            
            
                | 2673 | 
                AIME 2019 I Q8 | 
                Let \(x\) be a real number such that \(\sin^{10}x+... | 
                1500.00 | 
            
            
            
                | 2674 | 
                AIME 2019 I Q9 | 
                Let \(\tau (n)\) denote the number of positive int... | 
                1500.00 | 
            
            
            
                | 2675 | 
                AIME 2019 I Q10 | 
                For distinct complex numbers \(z_1,z_2,\dots,z_{67... | 
                1500.00 | 
            
            
            
                | 2676 | 
                AIME 2019 I Q11 | 
                In \(\triangle ABC\), the sides have integers leng... | 
                1500.00 | 
            
            
            
                | 2677 | 
                AIME 2019 I Q12 | 
                Given \(f(z) = z^2-19z\), there are complex number... | 
                1500.00 | 
            
            
            
                | 2678 | 
                AIME 2019 I Q13 | 
                Triangle \(ABC\) has side lengths \(AB=4\), \(BC=5... | 
                1500.00 | 
            
            
            
                | 2679 | 
                AIME 2019 I Q14 | 
                Find the least odd prime factor of \(2019^8 + 1\).... | 
                1500.00 | 
            
            
            
                | 2680 | 
                AIME 2019 I Q15 | 
                Let \(\overline{AB}\) be a chord of a circle \(\om... | 
                1500.00 |