Problem Rankings

Rank Source Description Elo Rating
2621 AIME 2014 II Q4 The repeating decimals \(0.abab\overline{ab}\) and... 1500.00
2622 AIME 2014 II Q5 Real numbers \(r\) and \(s\) are roots of \(p(x)=x... 1500.00
2623 AIME 2014 II Q6 Charles has two six-sided dice. One of the dice is... 1500.00
2624 AIME 2014 II Q7 Let \(f(x) = (x^2+3x+2)^{\cos(\pi x)}\). Find the ... 1500.00
2625 AIME 2014 II Q8 Circle \(C\) with radius \(2\) has diameter \(\ove... 1500.00
2626 AIME 2014 II Q9 Ten chairs are arranged in a circle. Find the numb... 1500.00
2627 AIME 2014 II Q10 Let \(z\) be a complex number with \(|z| = 2014\).... 1500.00
2628 AIME 2014 II Q11 In \(\triangle RED, RD =1, \angle DRE = 75^\circ\)... 1500.00
2629 AIME 2014 II Q12 Suppose that the angles of \(\triangle ABC\) satis... 1500.00
2630 AIME 2014 II Q13 Ten adults enter a room, remove their shoes, and t... 1500.00
2631 AIME 2014 II Q14 In \(\triangle ABC\), \(AB=10\), \(\angle A=30^\ci... 1500.00
2632 AIME 2014 II Q15 For any integer \(k\ge1\), let \(p(k)\) be the sma... 1500.00
2633 AIME 1986 I Q1 What is the sum of the solutions to the equation \... 1500.00
2634 AIME 1986 I Q3 If \(\tan x+\tan y=25\) and \(\cot x + \cot y=30\)... 1500.00
2635 AIME 1986 I Q4 Determine \(3x_4+2x_5\) if \(x_1\), \(x_2\), \(x_3... 1500.00
2636 AIME 1986 I Q7 The increasing sequence \(1,3,4,9,10,12,13\cdots\)... 1500.00
2637 AIME 1986 I Q8 Let \(S\) be the sum of the base 10 logarithms of ... 1500.00
2638 AIME 1986 I Q9 In \(\triangle ABC\), \(AB= 425\), \(BC=450\), and... 1500.00
2639 AIME 1986 I Q11 The polynomial \(1-x+x^2-x^3+\cdots+x^{16}-x^{17}\... 1500.00
2640 AIME 1986 I Q12 Let the sum of a set of numbers be the sum of its ... 1500.00