| 2361 | AIME 2020 I Q15 | Let \(ABC\) be an acute triangle with circumcircle... | 1500.00 | 
            
            
                | 2362 | AIME 2020 II Q1 | Find the number of ordered pairs of positive integ... | 1500.00 | 
            
            
                | 2363 | AIME 2020 II Q2 | Let \(P\) be a point chosen uniformly at random in... | 1500.00 | 
            
            
                | 2364 | AIME 2020 II Q3 | The value of \(x\) that satisfies \(\log_{2^x} 3^{... | 1500.00 | 
            
            
                | 2365 | AIME 2020 II Q5 | For each positive integer \(n\), let \(f(n)\) be t... | 1500.00 | 
            
            
                | 2366 | AIME 2020 II Q6 | Define a sequence recursively by \(t_1 = 20\), \(t... | 1500.00 | 
            
            
                | 2367 | AIME 2020 II Q7 | Two congruent right circular cones each with base ... | 1500.00 | 
            
            
                | 2368 | AIME 2020 II Q8 | Define a sequence of functions recursively by \(f_... | 1500.00 | 
            
            
                | 2369 | AIME 2020 II Q9 | While watching a show, Ayako, Billy, Carlos, Dahli... | 1500.00 | 
            
            
                | 2370 | AIME 2020 II Q10 | Find the sum of all positive integers \(n\) such t... | 1500.00 | 
            
            
                | 2371 | AIME 2020 II Q11 | Let \(P(x) = x^2 - 3x - 7\), and let \(Q(x)\) and ... | 1500.00 | 
            
            
                | 2372 | AIME 2020 II Q13 | Convex pentagon \(ABCDE\) has side lengths \(AB=5\... | 1500.00 | 
            
            
                | 2373 | AIME 2020 II Q14 | For real number \(x\) let \(\lfloor x\rfloor\) be ... | 1500.00 | 
            
            
                | 2374 | AIME 2020 II Q15 | Let \(\triangle ABC\) be an acute scalene triangle... | 1500.00 | 
            
            
                | 2375 | AIME 2013 I Q1 | The AIME Triathlon consists of a half-mile swim, a... | 1500.00 | 
            
            
                | 2376 | AIME 2013 I Q3 | Let \(ABCD\) be a square, and let \(E\) and \(F\) ... | 1500.00 | 
            
            
                | 2377 | AIME 2013 I Q4 | In the array of \(13\) squares shown below, \(8\) ... | 1500.00 | 
            
            
                | 2378 | AIME 2013 I Q7 | A rectangular box has width \(12\) inches, length ... | 1500.00 | 
            
            
                | 2379 | AIME 2013 I Q8 | The domain of the function \(f(x) = \text{arcsin}(... | 1500.00 | 
            
            
                | 2380 | AIME 2013 I Q10 | There are nonzero integers \(a\), \(b\), \(r\), an... | 1500.00 |