2141 |
AMC 12 1992 A Q30 |
Let \(ABCD\) be an isosceles trapezoid with bases ... |
1500.00 |
2142 |
AMC 12 1999 A Q1 |
\( 1 - 2 + 3 - 4 + \cdots - 98 + 99 =\)
$$ \tex... |
1500.00 |
2143 |
AMC 12 1999 A Q2 |
Which of the following statements is false?
$$ ... |
1500.00 |
2144 |
AMC 12 1999 A Q4 |
Find the sum of all prime numbers between \( 1\) a... |
1500.00 |
2145 |
AMC 12 1999 A Q7 |
What is the largest number of acute angles that a ... |
1500.00 |
2146 |
AMC 12 1999 A Q9 |
Before Ashley started a three-hour drive, her car’... |
1500.00 |
2147 |
AMC 12 1999 A Q10 |
A sealed envelope contains a card with a single di... |
1500.00 |
2148 |
AMC 12 1999 A Q11 |
The student locker numbers at Olympic High are num... |
1500.00 |
2149 |
AMC 12 1999 A Q14 |
Four girls — Mary, Alina, Tina, and Hanna — sang s... |
1500.00 |
2150 |
AMC 12 1999 A Q15 |
Let \( x\) be a real number such that \( \sec x - ... |
1500.00 |
2151 |
AMC 12 1999 A Q17 |
Let \( P(x)\) be a polynomial such that when \( P(... |
1500.00 |
2152 |
AMC 12 1999 A Q18 |
How many zeros does \( f(x) = \cos(\log(x)))\) hav... |
1500.00 |
2153 |
AMC 12 1999 A Q20 |
The sequence \( a_1\), \( a_2\), \( a_3\), \( \dot... |
1500.00 |
2154 |
AMC 12 1999 A Q21 |
A circle is circumscribed about a triangle with si... |
1500.00 |
2155 |
AMC 12 1999 A Q22 |
The graphs of \( y = -|x - a| + b\) and \( y = |x ... |
1500.00 |
2156 |
AMC 12 1999 A Q23 |
The equiangular convex hexagon \( ABCDEF\) has \( ... |
1500.00 |
2157 |
AMC 12 1999 A Q24 |
Six points on a circle are given. Four of the chor... |
1500.00 |
2158 |
AMC 12 1999 A Q26 |
Three non-overlapping regular plane polygons, at l... |
1500.00 |
2159 |
AMC 12 1999 A Q27 |
In triangle \( ABC\), \( 3\sin A + 4\cos B = 6\) a... |
1500.00 |
2160 |
AMC 12 1999 A Q28 |
Let \( x_1\), \( x_2\), \( \dots\), \( x_n\) be a ... |
1500.00 |