Problem Rankings

Rank Source Description Elo Rating
2141 AMC 12 1992 A Q30 Let \(ABCD\) be an isosceles trapezoid with bases ... 1500.00
2142 AMC 12 1999 A Q1 \( 1 - 2 + 3 - 4 + \cdots - 98 + 99 =\) $$ \tex... 1500.00
2143 AMC 12 1999 A Q2 Which of the following statements is false? $$ ... 1500.00
2144 AMC 12 1999 A Q4 Find the sum of all prime numbers between \( 1\) a... 1500.00
2145 AMC 12 1999 A Q7 What is the largest number of acute angles that a ... 1500.00
2146 AMC 12 1999 A Q9 Before Ashley started a three-hour drive, her car’... 1500.00
2147 AMC 12 1999 A Q10 A sealed envelope contains a card with a single di... 1500.00
2148 AMC 12 1999 A Q11 The student locker numbers at Olympic High are num... 1500.00
2149 AMC 12 1999 A Q14 Four girls — Mary, Alina, Tina, and Hanna — sang s... 1500.00
2150 AMC 12 1999 A Q15 Let \( x\) be a real number such that \( \sec x - ... 1500.00
2151 AMC 12 1999 A Q17 Let \( P(x)\) be a polynomial such that when \( P(... 1500.00
2152 AMC 12 1999 A Q18 How many zeros does \( f(x) = \cos(\log(x)))\) hav... 1500.00
2153 AMC 12 1999 A Q20 The sequence \( a_1\), \( a_2\), \( a_3\), \( \dot... 1500.00
2154 AMC 12 1999 A Q21 A circle is circumscribed about a triangle with si... 1500.00
2155 AMC 12 1999 A Q22 The graphs of \( y = -|x - a| + b\) and \( y = |x ... 1500.00
2156 AMC 12 1999 A Q23 The equiangular convex hexagon \( ABCDEF\) has \( ... 1500.00
2157 AMC 12 1999 A Q24 Six points on a circle are given. Four of the chor... 1500.00
2158 AMC 12 1999 A Q26 Three non-overlapping regular plane polygons, at l... 1500.00
2159 AMC 12 1999 A Q27 In triangle \( ABC\), \( 3\sin A + 4\cos B = 6\) a... 1500.00
2160 AMC 12 1999 A Q28 Let \( x_1\), \( x_2\), \( \dots\), \( x_n\) be a ... 1500.00