Problem Database
Home
Add Problem
Search
Compare
Rankings
Tag Untagged
Edit Problem
Problem Description
Points \(E\) and \(F\) are located on square \(ABCD\) so that \(\Delta BEF\) is equilateral. What is the ratio of the area of \(\Delta DEF\) to that of \(\Delta ABE\)? [asy] pair A=origin, B=(1,0), C=(1,1), D=(0,1), X=B+2*dir(165), E=intersectionpoint(B--X, A--D), Y=B+2*dir(105), F=intersectionpoint(B--Y, D--C); draw(B--C--D--A--B--F--E--B); pair point=(0.5,0.5); label("\(A\)", A, dir(point--A)); label("\(B\)", B, dir(point--B)); label("\(C\)", C, dir(point--C)); label("\(D\)", D, dir(point--D)); label("\(E\)", E, dir(point--E)); label("\(F\)", F, dir(point--F));[/asy] $$\textbf{(A)}\; \frac43\qquad \textbf{(B)}\; \frac32\qquad \textbf{(C)}\; \sqrt3\qquad \textbf{(D)}\; 2\qquad \textbf{(E)}\; 1+\sqrt3\qquad$$
Diagram (TikZ Code)
Solution
D
Tags
Difficulty
Source
Save Changes