Problem 2380

Given regular pentagon \(ABCDE\), a circle can be drawn that is tangent to \(\overline{DC}\) at \(D\) and to \(\overline{AB}\) at \(A\). The number of degrees in minor arc \(AD\) is $\textbf{(A)}\ 72 \qquad \textbf{(B)}\ 108 \qquad \textbf{(C)}\ 120 \qquad \textbf{(D)}\ 135 \qquad \textbf{(E)}\ 144$ [asy] size(100); defaultpen(linewidth(0.7)); draw(rotate(18)*polygon(5)); real x=0.6180339887; draw(Circle((-x,0), 1)); int i; for(i=0; i<5; i=i+1) { dot(origin+1*dir(36+72*i)); } label("\(B\)", origin+1*dir(36+72*0), dir(origin--origin+1*dir(36+72*0))); label("\(A\)", origin+1*dir(36+72*1), dir(origin--origin+1*dir(36+72))); label("\(E\)", origin+1*dir(36+72*2), dir(origin--origin+1*dir(36+144))); label("\(D\)", origin+1*dir(36+72*3), dir(origin--origin+1*dir(36+72*3))); label("\(C\)", origin+1*dir(36+72*4), dir(origin--origin+1*dir(36+72*4)));[/asy]

Solution: E

Tags: geometry,isoceles-triangle,trigonometry

Elo: 1485.4358728782763

Source: AMC 12 1995 A Q17

Edit
Problem 1287

Triangle \( ABC\) has a right angle at \( B\), \( AB = 1\), and \( BC = 2\). The bisector of \( \angle BAC\) meets \( \overline{BC}\) at \( D\). What is \( BD\)? [asy]unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair A=(0,1), B=(0,0), C=(2,0); pair D=extension(A,bisectorpoint(B,A,C),B,C); pair[] ds={A,B,C,D}; dot(ds); draw(A--B--C--A--D); label("\(1\)",midpoint(A--B),W); label("\(B\)",B,SW); label("\(D\)",D,S); label("\(C\)",C,SE); label("\(A\)",A,NW); draw(rightanglemark(C,B,A,2));[/asy]$$ \textbf{(A)}\ \frac {\sqrt3 - 1}{2} \qquad \textbf{(B)}\ \frac {\sqrt5 - 1}{2} \qquad \textbf{(C)}\ \frac {\sqrt5 + 1}{2} \qquad \textbf{(D)}\ \frac {\sqrt6 + \sqrt2}{2}$$ \( \textbf{(E)}\ 2\sqrt3 - 1\)

Solution: B

Tags: geometry,trigonometry,angle-bisector-theorem

Elo: 1545.8278203282016

Source: AMC 10 2009 B Q20

Edit
Problem 2482

Two of the altitudes of the scalene triangle \(ABC\) have length \(4\) and \(12\). If the length of the third altitude is also an integer, what is the biggest it can be? $$ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ \text{none of these} $$

Solution: B

Tags: angles,congruent-triangles,geometry,right-triangle,trigonometry,triangle

Elo: 1516.0

Source: AMC 12 1986 A Q29

Edit
Problem 1898

A three-quarter sector of a circle of radius \(4\) inches together with its interior can be rolled up to form the lateral surface area of a right circular cone by taping together along the two radii shown. What is the volume of the cone in cubic inches? [asy] draw(Arc((0,0), 4, 0, 270)); draw((0,-4)--(0,0)--(4,0)); label("\(4\)", (2,0), S); [/asy] $$\textbf{(A)}\ 3\pi \sqrt5 \qquad\textbf{(B)}\ 4\pi \sqrt3 \qquad\textbf{(C)}\ 3 \pi \sqrt7 \qquad\textbf{(D)}\ 6\pi \sqrt3 \qquad\textbf{(E)}\ 6\pi \sqrt7$$

Solution: C

Tags: 3d-geometry,volume,area,arc-length,circles,trigonometry,geometry

Elo: 1484.0

Source: AMC 12 2020 B Q9

Edit
Problem 2127

Triangle \( ABC\) has \( AB=13\) and \( AC=15\), and the altitude to \( \overline{BC}\) has length \( 12\). What is the sum of the two possible values of \( BC\)? $$\textbf{(A)}\ 15\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 17\qquad \textbf{(D)}\ 18\qquad \textbf{(E)}\ 19$$

Solution: D

Tags: area-of-triangle,pythagorean-theorem,triangle,geometry,trigonometry,right-triangle

Elo: 1484.0

Source: AMC 12 2009 B Q13

Edit
Problem 1882

Quadrilateral \(ABCD\) satisfies \(\angle ABC = \angle ACD = 90^{\circ}, AC = 20\), and \(CD = 30\). Diagonals \(\overline{AC}\) and \(\overline{BD}\) intersect at point \(E\), and \(AE = 5\). What is the area of quadrilateral \(ABCD\)? $$\textbf{(A) } 330 \qquad\textbf{(B) } 340 \qquad\textbf{(C) } 350 \qquad\textbf{(D) } 360 \qquad\textbf{(E) } 370$$

Solution: D

Tags: geometry,area,quadrilateral,right-triangle,trigonometry,pythagorean-theorem,angles

Elo: 1516.0

Source: AMC 12 2020 A Q18

Edit
Problem 2792

The ratio of the radii of two concentric circles is \(1:3\). If \(\overline{AC}\) is a diameter of the larger circle, \(\overline{BC}\) is a chord of the larger circle that is tangent to the smaller circle, and \(AB = 12\), then the radius of the larger circle is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair O=origin, A=3*dir(180), B=3*dir(140), C=3*dir(0); dot(O); draw(Arc(origin,1,0,360)); draw(Arc(origin,3,0,360)); draw(A--B--C--A); label("\(A\)", A, dir(O--A)); label("\(B\)", B, dir(O--B)); label("\(C\)", C, dir(O--C)); [/asy] $$ \textbf{(A)}\ 13\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 21\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 26 $$

Solution: B

Tags: circles,circle-theorems,trigonometry,geometry

Elo: 1484.0

Source: AMC 12 1992 A Q11

Edit
Problem 2350

Amy painted a dart board over a square clock face using the "hour positions" as boundaries. [See figure.] If \(t\) is the area of one of the eight triangular regions such as that between \(12\) o'clock and \(1\) o'clock, and \(q\) is the area of one of the four corner quadrilaterals such as that between \(1\) o'clock and \(2\) o'clock, then \(\frac{q}{t}=\) [asy] size((80)); draw((0,0)--(4,0)--(4,4)--(0,4)--(0,0)--(.9,0)--(3.1,4)--(.9,4)--(3.1,0)--(2,0)--(2,4)); draw((0,3.1)--(4,.9)--(4,3.1)--(0,.9)--(0,2)--(4,2)); [/asy] $$ \textbf{(A)}\ 2\sqrt{3}-2 \qquad\textbf{(B)}\ \frac{3}{2} \qquad\textbf{(C)}\ \frac{\sqrt{5}+1}{2} \qquad\textbf{(D)}\ \sqrt{3} \qquad\textbf{(E)}\ 2 $$

Solution: A

Tags: area,area-of-triangle,geometry,angles,trigonometry

Elo: 1516.0

Source: AMC 12 1993 A Q17

Edit
Problem 1821

Let \(S=\{(x,y) : x \in \{0,1,2,3,4\}, y \in \{0,1,2,3,4,5\}\), and \((x,y) \neq (0,0) \}\). Let \(T\) be the set of all right triangles whose vertices are in \(S\). For every right triangle \(t=\triangle ABC\) with vertices \(A\), \(B\), and \(C\) in counter-clockwise order and right angle at \(A\), let \(f(t)= \tan (\angle CBA)\). What is \[ \displaystyle \prod_{t \in T} f(t) \text{?} \] [asy] size((120)); dot((1,0)); dot((2,0)); dot((3,0)); dot((4,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); label("\(\circ\)", (0,0)); label("\(S\)", (-.7,2.5)); [/asy] $$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac{625}{144} \qquad \textbf{(C)}\ \frac{125}{24} \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ \frac{625}{24}$$

Solution: B

Tags: coordinate-geometry,trigonometry,angles,pythagorean-triples,geometry,coordinates,product,tangent

Elo: 1516.0

Source: AMC 12 2012 B Q25

Edit
Problem 1613

The angle bisector of the acute angle formed at the origin by the graphs of the lines \(y=x\) and \(y=3x\) has equation \(y=kx\). What is \(k\)? $$\textbf{(A)} \: \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)} \: \frac{1+\sqrt{7}}{2} \qquad \textbf{(C)} \: \frac{2+\sqrt{3}}{2} \qquad \textbf{(D)} \: 2\qquad \textbf{(E)} \: \frac{2+\sqrt{5}}{2}$$

Solution: A

Tags: angle-bisector,angle-bisector-theorem,angles,coordinate-geometry,geometry,trigonometry

Elo: 1484.0

Source: AMC 12 2021 Fall A Q13

Edit